

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2010
2. REPORT TYPE

Conference Paper Preprint
3. DATES COVERED (From - To)

June 2008 – March 2010
4. TITLE AND SUBTITLE

IANetServ: Design and Implementation of Robust An Auto-Configurable
Network Services for Airborne Network (PREPRINT)

5a. CONTRACT NUMBER
FA8750-08-C-0133

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
65502F

6. AUTHOR(S)

Kyung J. Kwak, Julia Deng, Justin Yackoski, Harry Bullen, Jason Li, Tony
McAuley, and Subir Das

5d. PROJECT NUMBER
08SB

5e. TASK NUMBER
IR

5f. WORK UNIT NUMBER
64

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Intelligent Automation, Inc. Telcordia Technologies, Inc.
15400 Calhoun Drive, Suite 400 One Telcordia Drive
Rockville, MD 20855 Piscataway, NJ 08854-4551

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2010-26

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved For Public Release; Distribution Unlimited. PA #: 88ABW-2010-1754
Date Cleared: 31-March-2010
13. SUPPLEMENTARY NOTES
This work, resulting in whole or in part from Department of the Air Force contract number FA8750-08-C-0133, has been submitted
for publication in the MILCOM 2010 proceedings. If this work is published, IEEE may assert copyright. The U.S. Government has
for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license to use, modify, reproduce,
release,perform, display, or disclose the work by or on behalf of the Government.All other rights are reserved by the copyright owner.
14. ABSTRACT
The next-generation airborne networks (ANs) will be all IP-based to provide seamless connectivity and reach ability among network
hosts including diverse aircrafts and unmanned air vehicles. Due to the dynamic nature and bandwidth/capacity limited channel
condition of airborne network, providing dynamic yet efficient network service always faces many challenges. In this paper, we
summarize the IANetServ architecture, which provides robust and auto-configurable network service framework suitable for
performance of the IANetServ architecture. Amongst many different types of network service, we limit our presentation of the
IANetService architecture to the address configuration and name resolution.

15. SUBJECT TERMS
Network Services, Airborne Networks, DHCP, DNS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF RESPONSIBLE PERSON
Bradley J. Harnish

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

1 of 7

IANetServ: Design and Implementation of Robust and Auto-
configurable Network Service for Airborne Network

Kyung J. Kwak, Julia Deng, Justin Yackoski, Harry Bullen, Jason Li

 Intelligent Automation, Inc.

Rockville, MD

Tony McAuley, Subir Das

Telcordia Technologies, Inc..

Piscataway, NJ

ABSTRACT

The next-generation airborne networks (ANs) will be all IP-

based to provide seamless connectivity and reachability among

network hosts including diverse aircrafts and unmanned air

vehicles. Due to the dynamic nature and bandwidth/capacity

limited channel condition of airborne network, providing

dynamic yet efficient network service always faces many

challenges. In this paper, we summarize the IANetServ

architecture, which provides robust and auto-configurable

network service framework suitable for airborne network

environments. We also present our implementation effort into

simulation and hardware to evaluate the performance of the

IANetServ architecture. Amongst many different types of network

service, we limit our presentation of the IANetServ architecture

to the address configuration and name resolution.

1. INTRODUCTION

Airborne Networks (ANs) have recently received

enormous attention as a new emerging all IP-based

network technology. It has been envisioned as an

infrastructure to provide communication services to a set of

heterogeneous mobile airborne platforms by

interconnecting airborne, terrestrial and space network

together [2]. ANs are still in its early stage of development

and commonly believed to have some flavor of dynamic

mobile ad hoc networks (MANETs), i.e., no fixed

infrastructure will be supported and nodes join or leave the

network frequently without planning. Given the

dynamically changing topology, limited network

bandwidth, and self-organizing nature of domains due to

high node mobility, designing an appropriate network

service framework also confront these challenges.

Some initial research efforts [2]-[5] have been made to

address these challenging issues. An auto-configuration

approach for network services in the AN environments [2]

was proposed by using randomly generated 57bit subnet

ID, multicast DNS for name service. This approach

provides a low possibility of address collisions for

relatively large network (i.e., 1000 airborne nodes).

However, there is always possibility of address collision. In

addition, this approach is not compatible with existing

standard implementations and lack of security

considerations.

In [4], an Integrated robust and Auto-configurable Network

Service (IANetServ) framework was initially designed in

order to provide robust and auto-configurable network

service support in ANs. For network configuration, an

automatic conflict-free address assignment was developed

with built-in mechanisms to further support network

dynamics, such as domain splitting and merging. For name

resolution service, the concept of Logical Name Service

(LNS) was introduced to provide robustness and efficiency.

We also extended the IANetServ framework to be diretly

applied to the JANSS (Joint Airborne Network Service

Suite) architecture [6][7]. In addition, the IANetServ

framework was enhanced by adding security boundary to

make it fit into the security enhanced airborne platform for

information assurance.

As a continuous effort, we implement the extended

IANetServ framework on our in-house agent-based

network simulator and wireless routers. In this paper, we

present our implementations of the extended IANetServ

framework in detail. It is noted that amongst diverse

network services, we focus more on the address service and

name service.

The rest of the paper is organized as follows. Section 2

reviews the JANSS design document for better

understandings of the JANSS architecture and the extended

IANetServ framework. Section 3 describes our

implementation on our in-house java simulator and Linksys

wireless router platform. Section 4 concludes IANetServ

design and implementation followed by a short

acknowledgement.

2. NETWORK SERVICE ARCHITECTURE

In this section, we briefly summarize the (1) JANSS, which

defines overall features and functions for Joint Airborne

Network (JAN) and (2) IANetServ framework, which

enables dynamic and autonomous network service among

heterogeneous airborne platforms. More detail description

of each IANetServ components can be found at [3] and [4].

2.1 JANSS architecture

The JANSS design document draws the whole picture of

integrated features, concept, standard and functions which

enables each airborne platform participate in the future all

PREPRINT

2 of 7

IP-based AN. The JANSS will allow air and maritime

platforms to be interoperable among themselves, and with

other edge tactical networks and Intelligence, Surveillance

and Reconnaissance (ISR) networks through transparent IP

connectivity. The required functional blocks for airborne

platform include name service, address service, service

discovery, mobility management, security service, and

network management. It also defines a simplified airborne

platform as in Figure 1. Each airborne platform supports

and manages multiple local area networks (LANs) through

AN router which functions as a gateway and maintains

several RF links via IP supported radios. Each IP radio also

has Mobile Network Router which provides routing

capability within each RF link.

Figure 1: Airborne Network Platform in JANSS [6]

The current JANSS architecture assumes the airborne

network operates at single security level (i.e., data

protection is performed via link encryption only).

However, in reality, the access to information and services

are based on the different sensitivity level classifications.

These Multiple Independent Levels of Security have

specific policies, procedures and requirements. A user must

not be able to read information at a security level higher

than its own, nor be able to write information to a lower

classification level. In fact, information must be mutually

invisible among levels/classifications/compartments. As it

is very inefficient for each security level to have its own

physical network, each classification level will transit

through an independent Secure Virtual Private Networks

(VPNs) over a shared backbone.

2.2 IANetServ framework

The IANetServ framework mainly consists of two network

services: address configuration, and name resolution.

For address configuration service, the ADCA (Adaptive

Domain Configuration Agent), DAP (Domain

Announcement Protocol), DHCP (Dynamic Host

Configuration Protocol), and DRCP (Dynamic and Rapid

Configuration Protocol) were designed to provide

automatic conflict-free address assignment under

bandwidth constraint environment. Similar to the legacy

Dynamic Host Configuration Protocol (DHCP), the DRCP

provides IP address configuration within one-hop

proximity. The DCDP distributes IP address pool to one

hop neighboring nodes by splitting its own address pool to

ensure conflict-free configuration. By combining both

DRCP and DCDP processes together, a subset of nodes in

the large network carry a chunk of IP address space and

assign the IP addresses to other non-configured nodes. In

doing so, they perform as a distributed and independent

address server. The DAP is a domain maintenance protocol

which handle network splitting and merging by using

periodic beacons. The ADCA controls configuration

process by monitoring what information has been

distributed through the DCDP and DRCP processes in each

domain.

Figure 2: Address auto-configuration mechanism

For name resolution service, we proposed the Logical

Name Service (LNS), which is an extension of legacy

Domain Name System (DNS). The fundamental

philosophy of LNS is based on the ideas of mobile IP and

the work in [10][11]a. A LNS server maintains three

different mapping tables, i.e., Topological, Logical, and

Home tables. The topological table contains name to IP

address mapping within its own domain. The logical table

maps a group of logical names to the IP address of the

logical home servers. The home table maps a particular

logical name to the IP address of the server that is currently

responsible for the specific entity.

While designing the LNS mechanism, we put special

emphasis on handling both node and name server mobility

to address the high dynamics in airborne environments.

Such goal could be achieved by adding dynamic server

configurations and autonomous linkages to enhance its

robustness and efficiency. In each domain, a name server is

dynamically elected to provide name resolution service in

its own domain. A backup name server might also be

selected when necessary.

2.3 IANetServ framework extension

3 of 7

We extended the IANetServ framework to be compatible

with JANSS architecture. Besides of address configuration

and name resolution service, the IANetServ framework

considers the various levels of security aspect at each

airborne platform. In our extended design, the NSA-

endorsed Inline Network Encryptors (INE) or High

Assurance Internet Protocol Encryptor (HAIPE) device

[10][11] divides airborne platform into the untrusted black

network and trusted red network. The key issue of

extending the IANetServ framework is where the different

IANetServ components should reside in the JANSS

architecture to provide efficient yet secure network service.

Figure 3 shows our proposed extended design, where a set

of name servers, ADCA agents and address configuration

protocols provide configuration and naming services on

both red and black network.

Figure 3: IANetServ framework in JANSS architecture

The ADCA, DAP, DRCP, and DCDP stay at the black

network. The ADCA handles IP address management

including maintaining address pools, address

lease/collection, domain merging/splitting and updating

configuration policy for reliable and autonomous

configuration service. In particular, the DAP/DRCP/DCDP

protocols will be placed on each IP radios which belong to

different tactical network. Each air platform is associated

with multiple IP addresses, static IP address (SIP) and

dynamic network IP address (NIP). There is a global static

IP address (GSIP_0 in the figure), associated with the AN

Router on each air platform. The GSIP works as a global

ID for the air platform.

Our address configuration protocols also can be deployed

in the red network. However, note that the hosts in red

network are usually wired connected and their addresses

are static. In this case, standard auto-configuration protocol

such as DHCP can also be used. There is a set of local

static IP addresses, associated with Red Router and local

hosts (LSIP_1, LSIP_2, LSIP_3, LSIP_4). The Red Router

works as a gateway router for the internal LAN on each air

platform. Each mobile router in the wireless net is

associated with a dynamically generated IP address, NIP.

To ensure a successful communication between any two

hosts (computers) located in any two air platforms through

each type of wireless radio connection, each wireless

communication radio will have a corresponding IP

Mapping component to map the NIP address with the

corresponding GSIP address. To maintain the network

topology and connectivity information, each airborne

platform need periodically exchange/update network

information with others during the network operation time.

In particular, the associated NIP of each airborne platform

is updated in the IP mapping table.

The LNS protocol also resides on the black network to

provide naming service. To handle high node dynamics in

a intermittent and bandwidth limited environments, table

synchronization among LNS servers is critical. Our

implementation and thorough evaluation confirms that

LNS protocol handles node dynamics reliably and

efficiently. This is exactly why LNS is proposed as part of

name resolution service in IANetServ. As all user

applications are on the red side, name resolution service is

also required on the red network. While placing a name

server on the red network, there are two contradictory

goals. To ensure robust and autonomous operation, it is

required to have redundant name servers. In contrast, it is

also desirable to keep fewer name servers to limit the use

of scarce network bandwidth, particularly when there are a

significant number of updates. To meet requirements of

airborne network, we believe one name server per red side

of platform is a good solution.

3. IANetServ Implementation

For realistic feasibility study and thorough performance

evaluation, we implemented the IANetServ architecture in

IAI’s Java based discrete network simulator NetSim and

Linksys WRT54G router. More detail description of each

implementation follows.

3.1 NetSim Simulation

The NetSim simulator is specially developed for simulation

and evaluation of advanced distributed algorithms for ad

hoc mobile networks. It is based on over a decade of

development effort of software agent-based infrastructure

Cybele (http://products.i-a-i.com/), which is a Java-only

layer that can be customized for the desired platform. It is a

runtime environment built on the top of the Java 2 platform

for control and execution of agents. The agent execution is,

however, event-driven and controlled by Cybele

 rather

than by JVM. A common basic network node structure

http://products.i-a-i.com/

4 of 7

provides the basis from which the network nodes for all

protocols are derived. This basic network agent component

is responsible for interacting with the simulation

environment and for providing the software under test with

the same inputs as it would experience if it were

implemented in a real device.

The NetSim simulator is able to explore distributed

computing capabilities for evaluation of scalability of

protocols, without traffic aggregation or pre-calculation

steps, which allows for human-in-the-loop

experimentation. In this architecture the nodes to be

simulated are implemented using autonomous agents. Each

agent/node generates, receives and processes packets

independently, as it would on a real network. It is

important to note that the code executing on each agent is

no different from the code that would actually execute on

the real system, except for the way in which they

communicate with the environment.

In our IANetServ architecture implementation in NetSim,

each node is defined as an individual agent and its

configuration is set by scenario file and configuration file.

A scenario file specifies node movement (e.g., speed, path

shape, relay point, etc) and enable/disable application

access (e.g., data or real time traffic transfer). On the other

hand, a configuration file defines initial node position and

node specific information, e.g., host name, domain name,

priority, initial IP pool size, etc. All detail functions of

IANetServ are implemented, e.g., DRCP, DCDP, DAP,

and LNS activities, etc. Each node selectively calls

activities when necessary. We assume several tactical edge

network is interconnected through a backbone network.

(a) Initial topology

(b) Two domains are merged (in color green and pink)

and some nodes leave its original domain

(c) Isolated nodes elect a LNS server and form new domain (in

color yellow)

(d) New domain joined the backbone network. One node

transmits a video streaming to a node in the domain

which just joined the backbone

Figure 4: Domain merging and splitting

The Border Gateway Protocol (BGP) is the routing

protocol used in backbone network to properly deliver LNS

queries and responses among LNS. To achieve this goal,

BGP and network service protocol suite were integrated

with each other such that any BGP node can configure its

IP address and get proper naming service through LNS

server. Within each edge network, the Ad hoc On-Demand

Distance Vector Routing (AODV) is used to transport data

packets as well as network service protocol packets. The

mobility pattern of backbone nodes mimics the Caspian

Sea scenario (i.e., moving path forms a long eclipse), and

the nodes in edge network follow some customized the

mobility to demonstrate different network scenarios.

Here we present two simulation scenarios. The first

scenario tests a case where one node joins and leaves a

domain. Although other nodes also fairly move, we call

5 of 7

that node the mobile node since its speed is much higher

than others. Before the mobile node switches its domain,

another node in the same domain transmits a video

streaming to the mobile node. While the mobile node

enters a new domain and reconfigures its address, a video

transmission will be halted since the old IP address is no

longer valid. Once a new IP address is assigned and all

LNS tables are updated, the video transmission will be

resumed. Note that a source node will send a LNS query

again to its LNS server after it recognizes the mobile

node’s domain change and IP address reconfiguration of

the mobile node accordingly. Since all LNS servers are part

of backbone network, all LNS queries and updates will be

routed through BGP. Routing path is marked in red line

and a popup window displays the video stream that has

received.

Figure 4 shows snapshots of the second scenario, where

several domain merging and splitting are handled. In

Figure 4, nodes in blue and red are backbone nodes which

interconnect with two tactical edge networks in color green

and purple, and third edge network (in color yellow) is

isolated. As the domain in color yellow heads north, it

receives a LNS broadcasting with higher domain priority

(in color green). Upon receiving a LNS broadcasting,

nodes merge into the new domain and reconfigure their IP

address through DRCP/DCDP processes. Simultaneously,

three nodes in green will leave their domain and form a

new domain (see Figure 4(b)).

As nodes are isolated, they cannot listen any LNS

broadcasting and realize domain split. Later, new LNS

server will be elected within the newly formed domain and

it will also assign new IP address to all members (see

Figure 4(c)). The three nodes keep moving until they are

reconnected through the backbone network, and then a

node in bottom domain transmits a video file to a node on

top (see Figure 4(d)). In real scenarios, airborne platforms

might have satellite link to prepare for the case when

backbone connectivity is lost. However, we assume inter-

domain communication always go through the backbone

network. Through the above two testing scenarios, we

observed that the IANetServ architecture successfully

handles domain merging/splitting and IP address

assignment to dynamic nodes and resolves name in robust

and efficient fashion. This simulation also confirms that

LNS tables at each LNS server are efficiently and reliably

synchronized.

3.2 Router implementation

To further test the performance of the IANetServ

framework, we implemented it on the Linksys WRT54G

routers. The router is selected since it is notable for being

the first consumer-level network device that had its

firmware source code released to satisfy the obligations of

the GNU. This allows programmers to modify the

firmware to change or add new functionality. Its CPU

speed is 240 MHz and the size of RAM and Flash is 8 MB

and 2MB respectively. The OpenWrt [12] firmware is used

in this research. To control network topology as we wanted

and minimize interference among routers, we applied 50dB

RF signal attenuator to the front of antenna. Note that

communication range has shrunk from 150 feet to about 10

feet.

The DRCP and DCDP protocols are implemented in Linux

using a scripting language and a custom program written in

C to perform the actual sending of packets via unicast

and/or broadcast. All protocols messages are sent via UDP

as human-readable ASCII text. Both DRCP and DCDP are

implemented as a pair of actor and listener processes, with

the actor process initiating actions on behalf of the current

node and the listener process handling packets received on

the DRCP and DCDP ports. The LNS implementation

consists of two components. First, nodes use the LNS

mechanism to look up another node’s IP address on top of

the legacy DNS. Each LNS node runs an unmodified DNS

server where any changes of the IP address to host name

mapping triggers DNS server configuration update and

reload. Second, to perform updates between multiple

domains, LNS nodes periodically exchange

LNS_UPDATE messages, advertising IP addresses

assigned within their domain using the same format as in

the DRCP_RENEW with the node ID, assigned IP, and

time elapsed. By comparing the time elapsed in the

LNS_UPDATE message from another domain with the

LNS node’s record of any IPs assigned within its own

domain, each LNS node can determine which IP

assignment is most recent and use this assignment in

response to DNS queries. The LNS_UPDATE messages

can be easily incorporated into BGP or other routing data,

however when few domains are present this may save

minimal overhead and result in additional delay updating

the IP and ID mappings.

Figure 5(a) shows our test setup where a mobile node

switches its domain back and forth. Each domain consists

of 5~6 routers which form one or two hop neighbors with

each other. Each router competes with members in a

domain to be elected as a LNS server. We use uptime of

each router as the mean of priority (i.e., longer uptime has

higher priority). One router (node 8) was put on the robot

which travels between two domains (domain 12 and 13).

For the debugging and demonstration purpose, we also

developed a Graphic User Interface (GUI) as shown in

Figure 5(b). Left panel shows the progress of IP pool and

address assignment. Arrows indicates which nodes is

assignee and assigner. Numbers indicate the last eight bits

of IP address. Note that each domain has its own IP prefix.

/wiki/Firmware
/wiki/GNU
/wiki/Firmware

6 of 7

Right panel shows connectivity and routing path. We used

the Optimized Link State Routing (OLSR) protocol in

Quagga package [13] for intra-domain routing. To emulate

backbone connectivity, we used company Ethernet for LNS

nodes to exchange and update their LNS tables. To validate

and evaluate the performance of IANetServ

implementation, we set a node in domain 12 periodically

ping the mobile node throughout the test. The green and

red squares at the bottom of GUI show whether ping

message was successful or not. In GUI display, green

means ping message goes through.

(a) Test setup with 3 domains and one mobile router

(b) GUI display (c) GUI display with red/black network connectivity

Figure 5: IANetServ router implementation and GUI design

To implement emulation of red/black network separation,

we assign each router a unique host name ID.iai, which is

updated and served by the LNSs. This corresponds to GSIP

and it is map the router’s black IP address. We also

assigned a unique red IP address, since red IP address does

not change frequently. The Black IP address was the only

one that dynamically assigned and updated at each LNS

server. We use bridge control to interconnect emulated red

and black network. In our GUI as in Figure 5(c), the

connectivity between multiple black IP addresses is

represented dynamically by asking routers to ping the

ID.iai (or GSIP) of other routers. This process requires

mapping between GSIP and black IP address and name

resolution at each LNS server. To emulate the VPN tunnel

between any pair of red network entities, Vtun [14] is used

to setup VPN tunnels. Vtun is a tunneling program with a

client/server model. It is flexible in supporting many types

of tunneling and allowing for traffic to be compressed and

encrypted. The bottom table of GUI shows reachability of

any pair of red host through bridge control and Vtun.

4. CONCLUSIONS

The topology of airborne networks continuously changes

and channel bandwidth is limited, thus autonomous and

reliable yet efficient network service architecture is highly

desired. In this paper, we summarized our effort on

designing an Integrated robust and Auto-configurable

Network Service (IANetServ) architecture to handle the

network dynamics and bandwidth constraints over airborne

networks. We also presented our implementation on agent

based Java simulator and Linksys routers. Our evaluation

7 of 7

using simulation and hardware implementation confirmed

the effectiveness and robustness of IANetServ architecture.

While existing works on network service dedicated to

airborne networks are either limited to few aspect of

network service or based on the approached in wired

network, the IANetServ architecture is the first complete

solution for robust, scalable, and autonomous network

service in airborne network environments. Our on-going

effort is to finalize our hardware implementation and polish

our design.

ACKNOWLEDGEMENT

We would like to express our appreciation to AFRL for

funding this research with contract number FA8750-08-C-

0133. We would also like to give our thanks to our

program managers Mr. Bradley Harnish and many research

associates from AFRL and MITRE for their valuable

suggestions and advices during this research.

REFERENCE

[1] Daryl Mayer, “Airborne Network to link sensors, shooters,

decision makers,”

http://integrator.hanscom.af.mil/2005/February/02242005-

02.htm

[2] USAF Airborne Network Special Interest Group, “Airborne

Network Architecture” version 1.1, October 2004,

[3] L. Veytser, T. Shepard, J. Colley and V. Mehta,

“Autoconfiguration of network services in Airborne wireless

networks,” IEEE MILCOM 2005.

[4] H. Deng, J. Li, R. Xu, T. McAuley, S. Das, D. Agrawal, “An

Integrated Robust and Auto-Configurable Network Service

Protocol Suite for Airborne Networks” IEEE MILCOM

2008.

[5] Steven V. Pizzi, “A Routing Architecture for the Airborne

Network,” MITRE 2007.

[6] Joint Airborne Network Services Suite, US Air Force

standards definition document, Nov. 2006.

[7] R. Trafton, S. V. Pizzi, “The Joint Airborne Network

Services Suite,” IEEE MILCOM 2006.

[8] G. Nakamoto, “Scalable HAIPE Discovery,” In Visualizing

Network Information Meeting 2006.

[9] M. Mirhakkak, P. Ta, G. Comparetto, V. Fineberg,

"Modeling and Simulation of Haipe," MILCOM, pp.1-7,

MILCOM 2006.

[10] R. Morera and A. McAuley, “Adapting DNS to

dynamic ad hoc networks,” Proceedings of IEEE MILCOM

2005.

[11] A. Misra, S. Das, A. McAuley, and S. K. Das,

“Autoconfiguration, Registration, and Mobility Management

for Pervasive Computing,” IEEE Personal Communications,

Volume 8, Issue 4, pp. 24-31, 2001.

[12] OpenWrt, http://openwrt.org/

[13] Quagga package, http://www.quagga.net/

[14] Virtual tunnel, http://vtun.sourceforge.net/

http://integrator.hanscom.af.mil/2005/February/02242005-02.htm
http://integrator.hanscom.af.mil/2005/February/02242005-02.htm
http://openwrt.org/
http://www.quagga.net/
http://vtun.sourceforge.net/

